Abstract
Graphitic carbon nitride (g-C3N4) has been considered as one of the most promising photocatalysts for solar energy conversion. However, the intrinsic drawbacks of insufficient visible-light absorption and poor charge separation efficiency seriously limit its practical applications in visible light photocatalytic hydrogen evolution. In this work, a facile one-step strategy was proposed to construct a novel porous defect-modified graphitic carbon nitride (P-DCN) via thermal polymerization of a freeze-dried crystalline mixture containing dicyandiamide (DCDA) and ammonium chloride (NH4Cl) under nitrogen atmosphere, in which both porous feature and two types of defects (cyano group and nitrogen vacancy) were simultaneously introduced into g-C3N4 framework. Results show that the as-synthesized P-DCN Exhibits 26 times higher hydrogen evolution rate (HER) under visible light irradiation than bulk g-C3N4, reaching 20.9 μmol h−1. In combination of porous and defective characteristics, P-DCN even demonstrates 2.0 and 1.8 folds higher HER than highly active porous graphitic carbon nitride (P-CN) and defect-modified g-C3N4 (DCN), respectively. The outstanding photocatalytic performance for hydrogen production originates from the remarkably improved visible light harvesting capability, the notably promoted separation and recombination inhibition of photoinduced charge carriers, and the increased amount of active sites and the strengthened mass transfer resulting from the combination effect of the porous feature, as-formed defects, and the enlarged specific surface area. Moreover, this approach could render a new insight for designing highly efficient visible light photocatalysts for the other transformations including CO2 reduction, environmental remediation, and organic synthesis process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.