Abstract

Novel crosslinking bio polyurethane based polymeric solid–solid phase change materials (SSPCM) were synthesized using castor oil (CO) based hyperbranched polyols as crosslinkers. CO-based hyperbranched polyols were synthesized by grafting 1-mercaptoethanol or α–thioglycerol via a thiol-ene click reaction method (coded as COM and COT, respectively). Subsequently, the three SSPCMs were synthesized by a two-step prepolymer method. Polyethylene glycol was used as the phase change material in the SSPCMs, while the CO-based hyperbranched polyols and two types of diisocyanate (hexamethylene diisocyanate (HDI) and 4,4'-diphenylmethane diisocyanate) served as the molecular frameworks. Fourier transform infrared spectroscopy indicated the successful synthesis of the SSPCMs. The solid–solid transition of the prepared SSPCMs was confirmed by X-ray diffraction analysis and polarized optical microscopy. The thermal transition properties of the SSPCMs were analyzed by differential scanning microscopy. The isocyanate and crosslinker types had a significant influence on the phase transition properties. The SSPCM samples prepared using HDI and COT exhibited the highest phase transition enthalpy of 126.5 J/g. The thermal cycling test and thermogravimetric analysis revealed that SSPCMs exhibit outstanding thermal durability. Thus, the novel SSPCMs based on hyperbranched polyols have great potential for application as thermal energy storage materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call