Abstract
A novel self-curing epoxy resin was synthesized using bio-oil. Bio-oil was produced by hydrothermal liquefaction of loblolly pine and utilized as a biopolyol in the synthesis of bio-oil-based epoxy resin (BOBER) for the first time. Hydroxyl groups in bio-oil were analyzed by quantitative 31P NMR. It was found that not only does the total hydroxyl number of bio-oil influence the yield and epoxy equivalent weight of BOBER, but also the distribution of hydroxyl groups within bio-oil (aliphatic, phenolic, and acidic OH) played an important role in the determination of the optimum amount of catalyst in the synthesis of BOBER. Differential scanning calorimetry analysis proved the self-curing phenomena of BOBER, and Fourier transform infrared spectroscopy suggested that etherification reaction was the dominate reaction during the self-curing. Glass transition temperature, cross-linking density, and the storage modulus of self-cured BOBER were calculated using a dynamic mechanical analyzer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.