Abstract

The development of a novel accelerator capable of simultaneously enhancing the cross-linking density and ductility of an epoxy resin without sacrificing the reaction rate is reported. The basic concept comprises the synthesis of a tertiary amine-functionalized polyrotaxane (PRX_NR1) accelerator: a molecular necklace structure that induces a high cross-linking density as well as active molecular movement. Fourier transform infrared spectroscopy and differential scanning calorimetry measurements confirmed that the PRX_NR1-containing epoxy resin afforded a high reaction rate. Furthermore, the cross-linking density and mechanical properties of the epoxy resin were confirmed by dynamic mechanical analysis and tensile testing. Consequently, the PRX_NR1-containing epoxy resin greatly increased the cross-linking density, thereby resulting in an increase in tensile strength and glass transition temperature. Interestingly, the epoxy resin exhibited a simultaneous increase in ductility which is important to avoid brittle fracture (low toughness) of the epoxy resins. These results indicate that the proposed molecular necklace-like supramolecular PRX_NR1 accelerator is highly effective to overcome the traditional drawbacks of an epoxy resin that pose significant problems in the industrial field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call