Abstract

In recent years, metal-organic frameworks (MOFs) have gained attention in the biomedical field, particularly as drug carriers for treating tumors. Therefore, we decided to synthesize a novel benzoic acid Zn-based MOF and study the Zn-based MOFs' drug-delivery properties and the drug-delivery system's anticancer effects. This study successfully synthesized a zinc-based MOF using solvent thermal synthesis. The crystal structure of a Zn-based MOF was investigated using thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. Subsequently, the results of UV spectrophotometry showed that Doxorubicin was successfully loaded with a loading amount of 33.74%. Furthermore, the drug release experiments demonstrated that the Zn-based MOF was pH-sensitive, releasing more at a pH of 3.8 than at pH 5.8 or 7.4. Finally, the Zn-based MOF loaded with drugs exhibited high antitumor activity against HepG2 cells while demonstrating remarkably low toxicity to normal cells (LO2). Taken together, these results demonstrate that the Zn-based MOF has the potential to serve as a carrier in the field of drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call