Abstract

Phytopathogenic fungi penetrate plants by breaking down the cuticular barrier with cutinase. Cutinases are extracellular hydrolytic enzymes that degrade cutin, a polyester composed of hydroxy and epoxy fatty acids. Until now, cutinase has been recognized by its ability to release labeled cutin monomers or by a non-specific esterase assay based on the hydrolysis of p-nitrophenyl esters of short fatty acids. In this work, an insoluble p-nitrophenyl derivative was synthesized and purified, and its structure was determined to be 4-nitrophenyl (16-methyl sulfone ester) hexadecanoate (pNMSEH) by nuclear magnetic resonance (H + NMR) analysis. pNMSEH was tested as a new cutinase substrate with Pseudomonas mandocino cutinase and porcine liver esterase. While a linear release over time of p-nitrophenol (pNP) was recorded in the presence of cutinase, no response was obtained with the esterase. The calculated kinetic parameters of pNMSEH hydrolysis by cutinase revealed a high specificity ( K m = 1.8 mM), albeit a low catalytic rate ( V max = 10.5 μmol min −l l −1). This new synthetic substrate may be helpful for detecting and assaying cutinase activity in mixed solutions, such as crude fungal extracellular extracts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.