Abstract

AbstractNickel single‐atom‐catalysts (Ni−SACs), which are known for their unique catalytic activity, are mainly used in electrocatalytic reactions that focus on high metal loading in carbon support to improve their performance. However, we attempted to modify the Ni species to find new catalytic properties by hypothesizing that functionalized Ni−SACs can exhibit strong Lewis acidic properties in organic reactions. Herein, a low‐temperature salt‐assisted synthesis of highly Lewis acidic chlorine‐bound nickel SAC (Cl−Ni−SAC) is established and the synthesized catalyst is applied to the ring‐opening reaction of epoxides with alcohol. The obtained Cl−Ni−SAC facilitates a fast and efficient ring‐opening reaction of epoxides with high recyclability. In addition, the highly active Cl−Ni−SAC was applied to the continuous flow set‐up for sustainable transformation for 24 h, yielding 9.7 g of the desired product. Stereochemical experiments and density functional theory calculations demonstrated the importance of MeOH⋅⋅⋅Cl hydrogen bonding, N−H⋅⋅⋅Ni agostic interaction, and π‐stacking in the transition state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.