Abstract

Abstract Starch-based superabsorbent polymers (SAPs) were produced by graft copolymerization of starch-g-acrylamide using a twin-roll mixer as reactor. This work focused on the effect of starch microstructure (amylose/amylopectin contents) from the same source (corn starch) on the graft ratio (GR), graft efficiency (GE) and Add-on (AO), as well as water absorption capability (WAC) of the SAPs, which were investigated by FTIR, NMR, gravimetric and TGA. The torque variation represented all the processing in the reactor, including compress, gelatinization, graft reaction and crosslinking. Results showed that all the starches were successfully grafted with acrylamide then crosslinked by N.N′-methylene-bisacrylamide through this technology. Both AO and GR increased with increasing amylose content. But the GE decreased with increasing amylose content, which is different from the results in the solution reaction. The higher WAC of high amylose starch-based SAP corresponds with higher AO and GR, while the higher WAC of waxy-based SAP corresponds with higher GE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call