Abstract
Abstract Biodegradable superabsorbent polymers (SAPs) were prepared by grafting acrylamide onto starches then crosslinking with N,N′-methylene-bisacrylamide. This work focused on the effects of the amylose/amylopectin ratio of starches from the same source (corn) on the grafting reactions and performance of the resultant starch-based SAPs. To characterise each SAP, the acrylamide groups grafted onto the starch were detected by FTIR; grafting ratio and grafting efficiency were evaluated by a gravimetric method; and graft position and the length of the grafted segment were investigated by NMR. The relationships between the microstructures of the starches, and the graft reactions and performance of the SAPs were studied based on the amylose content in the starches. It was found that under the same reaction conditions, the grafting ratio and efficiency increased with increasing amylose content, which corresponds with water absorption ratio. NMR results indicated that the acrylamide group mainly grafted onto C6, and that the length of the grafted segment decreased with increasing amylopectin content in general, and in particular for waxy starch. The high molecular weight and branched structure of amylopectin reduced the mobility of the polymer chains and increased viscosity, which could explain the graft reactions and performance of the starch-based SAPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.