Abstract
This study focused on the fabrication and the theoretical analysis of solidly mounted resonators (SMR) concerning dual-mode frequency responses and their frequency shift of bulk acoustic wave (BAW) resonance. For this device fabrication, RF/DC magnetron sputtering and photolithography were employed to constitute the required multilayer structure. For the theoretical analysis, the dualmode frequency shift was characterized by the Sauerbrey's formula, and a modified formula was carried out following the trend for the large frequency shift. In the fabrication of the SMR device, Mo/SiO2 was chosen to construct the Bragg reflector as the high/low acoustic impedance materials, respectively, and aluminum nitride (AlN) was used as a piezoelectric layer. To investigate the characteristics of BAW on the dual-mode frequency shift, the c-axis tilted angle of AlN was altered as well as the various mass loading on the SMR. Based on the experimental results, the dual-resonance frequencies showed a nonlinear decreasing trend with a linear increase of the mass loading. Therefore, a modified formula was carried out. Furthermore, the ratio of the longitudinal-resonant frequency to the shear-resonant frequency remained at a range around 1.76 despite the various c-axis tilted angles of AlN and gradual mass loading on the SMR. The electromechanical coupling coefficient, k2(eff), of the shear resonance rose with the increase of the c-axis tilted angle of AlN.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have