Abstract

Histone deacetylase 6 (HDAC6) is a potential target for Alzheimer's disease (AD). In this study, a series of novel phenothiazine-, memantine-, and 1,2,3,4-tetrahydro-γ-carboline-based HDAC6 inhibitors with a variety of linker moieties were designed and synthesized. As a hydrochloride salt, the phenothiazine-based hydroxamic acid W5 with a pyridyl-containing linker motif was identified as a high potent and selective HDAC6 inhibitor. It inhibited HDAC6 with an IC50 of 2.54 nM and was more than 290- to 3300-fold selective over other HDAC isoforms. In SH-SY5Y cells, W5 dose-dependently increased the acetylated α-tubulin levels and reduced the hyperphosphorylated tau proteins at Ser396. As an effective metal chelator, W5 inhibited Cu2+-induced Aβ1–42 aggregation and disaggregated Cu2+-Aβ1−42 oligomers, and showed protective effects on the SH-SY5Y cells against Aβ1–42- as well as Cu2+-Aβ1–42 induced cell damages, serving as a potential ligand to target AD metal dyshomeostasis. Moreover, W5 promoted the differentiated neuronal neurite outgrowth, increased the mRNA expression of the recognized neurogenesis markers, GAP43, N-myc, and MAP-2. Therefore, W5 might be a good lead for the development of novel HDAC6 inhibitors targeting multi-facets of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call