Abstract

The design and synthesis of a new class of nonpeptide direct thrombin inhibitors, built on the structure of 1-(pyridin-4-yl)piperidine-4-carboxamide, are described. Starting from a strongly basic 1-amidinopiperidine derivative (6) showing poor thrombin (fIIa) and factor Xa (fXa) inhibition activities, anti-fIIa activity and artificial membrane permeability were considerably improved by optimizing the basic P1 and the X-substituted phenyl P4 binding moieties. Structure-activity relationship studies, usefully complemented with molecular modeling results, led us to identify compound 13b, which showed excellent fIIa inhibition (Ki = 6 nM), weak anti-Xa activity (Ki = 5.64 μM), and remarkable selectivity over other serine proteases (e.g., trypsin). Compound 13b showed in vitro anticoagulant activity in the low micromolar range and significant membrane permeability. In mice (ex vivo), 13b demonstrated anticoagulant effects at 2 h after oral dosing (100 mg·kg(-1)), with a significant 43% prolongation of the activated partial thromboplastin time (aPTT), over controls (P < 0.05).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.