Abstract

A series of sulpha/substituted derivatives of phenyl azo-1,2-diazole have been synthesized and tested as an anti-inflammatory and anti-bacterial activity in mature albino rats hind paw by taking Diclofenac sodium as standard. N1-(4-hydroxy benzoyl)-3-methyl-5-phenyl-4(N-4-chlorophenylazo)-1,2-diazole is synthesized by a two-step process. In the first step, synthesis of N1-4-chlorophenyl hydrazono-1-methyl-3-phenyl propane-1,3-dione by the reciprocal action of 1-methyl-5-phenylpropane-1,3-dione and diazonium salt solution of phenyl-chloride interacts with 4-hydroxybenzoic acid hydrazide to form the final compound. These diazoles, the heterocyclic compounds which contained electron withdrawing groups, were screened for analgesic activity by acetic acid induced writing method, and for anti-inflammatory activity carried on carrageenan-induced paw edema. The synthesized substituted Chlorophenylazo-1,2-diazole nucleus exhibited significant anti-bacterial, anti-cancer, anti-inflammatory activity, muscle relaxing and moderate activity in anti-proliferative studies.

Highlights

  • N1-(4-hydroxy benzoyl)-3-methyl-5-phenyl-4(N-4-chlorophenylazo)-1,2-diazole is synthesized by a two-step process

  • The results obtained from the synthesized compounds with a dose of 100 mg/kg confirmed that maximum activity was obtained when X was substituted by halogen (Compound-8) with 74.73% inhibition, when X was substituted by a chlorine group (Compound-2) with 72.90% inhibition; X was substituted by -NO2 group (Compound-3) with 70.80% inhibition, X was substituted by -N (CH3)2 group (Compound-5) with 32.85% inhibition, X was substituted by -OH group (Compound-4) with 49.27% inhibition, X was substituted by -C6H5 group (Compound-1) with 36.86% inhibition

  • It was found that the electron withdrawing groups and alkene containing synthesized compounds enhanced the anti-inflammatory activity

Read more

Summary

Introduction

Due to increased application of a large number of heterocyclic compounds such. S. Bhatt et al 2 as pesticides, herbicides, pharmaceuticals, etc., in recent times, the development in heterocyclic chemistry has been very rapid. Intensive investigations of synthetic compounds which are in many times analogy of known pharmaceutical agents result in the development of new drugs. The stability of the heterocyclic compounds depends on the size of the ring. The three- or four-membered rings are relatively unstable, while five- and six-membered rings are highly stable. The derivatives of stable five-membered ring system containing carbon with two heteroatoms, is known as Pyrazole or (1-2-diazole) [1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call