Abstract

Using the aldehyde amine condensation procedure and the triphenylamine group as the skeleton structure, the new triphenylamine-aromatic aldehyde-succinylhydrazone probe molecule DHBYMH was created. A newly created acylhydrazone probe was structurally characterized by mass spectrometry (MS), NMR, and infrared spectroscopy (FTIR). Fluorescence and UV spectroscopy were used to examine DHBYMH's sensing capabilities for metal ions. Notably, DHBYMH achieved a detection limit of 1.62 × 10-7 M by demonstrating exceptional selectivity and sensitivity towards Cu2+ ions in an optimum sample solvent system (DMSO/H2O, (v/v = 7/3); pH = 7.0; cysteine (Cys) concentration: 1 × 10-4 M). NMR titration, high-resolution mass spectrometry analysis, and DFT computation were used to clarify the response mechanism. Ultimately, predicated on DHBYMH's reversible identification of Cu2+ ions in the presence of EDTA, a molecular logic gate was successfully designed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.