Abstract

Biomass burning (BB) releases large amounts of water-soluble organic carbon (WSOC), which would undergo heterogenous oxidation processes that induce transformations in both molecular structures and compositions within BB WSOC. This study designed an aqueous oxidation initiated by OH radicals in the absence of light for WSOC extracted from smoke particles generated by burning of corn straw and fir wood. The BB WSOC was comprehensively characterized using a combination of UV–visible spectra, excitation-emission matrix fluorescence in conjunction with parallel factor analysis (EEM-PARAFAC), high-performance size exclusion chromatography (HPSEC), and high-resolution mass spectrometry (HRMS) analyses. Over the course of oxidation, both chromophores and fluorophores exhibited gradual decreases. Moreover, EEM-PARAFAC revealed a preferential degradation of larger-sized protein-like/phenol-like organic matters, accompanied by the accumulation and/or formation of humic-like substances in aged BB WSOC. HPSEC analysis showed notable changes in molecular weight (MW) distributions for both types of BB WSOC during oxidation. Specifically, high MW species (>1 kDa) displayed a tendency to form along with oxidation, possibly attributed to the formation of assemblies via intermolecular weak forces. After oxidation, evidence of CHO compound degradation and enrichment/formation of CHON compounds was observed for both types of BB WSOC. Remarkably, the resistant, degraded and produced molecules for BB WSOC were dominated by CHO (38–73 %) and lignin-like molecules (41–47 %), suggesting diverse responses to oxidation within these two groups. Furthermore, polyphenols experienced selective degradation, while CHON, aliphatic and poly-aromatic molecules tended to form during the oxidation process for both types of BB WSOC. In summary, this study provides a comprehensive understanding of the molecular-level transformations undergone by BB WSOC during dark aqueous OH oxidation. The findings significantly contribute to our insights into atmospheric evolution of BB WSOC, thereby playing a crucial role in accurately assessing their effects within climate models and informing policy decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call