Abstract

ABSTRACTThis study is conducted to find the conditions required to synthesize composite material for cesium (134Cs+) removal from the generated liquid waste associated with nuclear, medical, industrial, and/or research activities. The study shows that the optimum conditions required for synthesizing “Poly [acrylamide (AM)-itaconic acid (IA)]/N,N′-methylenediacrylamide (DAM)/Zirconium tungstate (ZrW)” or “Poly(AM-IA)/DAM/ZrW” are 0.01 g DAM dose as a cross-linker, a co-monomer concentration of 20%, a co-monomer composition (AM-IA) (12:88), and 0.03 g (melted at 450 °C–500 °C) ZrW with gamma irradiation dose of 30 kGy. The composite material was characterized by Fourier infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. The adsorption performance of the composite was investigated. The maximum removal efficiency of 134Cs+ ions was found to be 93% in moderate alkaline solutions at pH 8 ± 0.2 after 90 min. Kinetic studies indicated that the adsorption process is controlled by the pseudo-second-order kinetic model as a chemisorption process. Fitting of the adsorption data has pointed out that the adsorption process follows the Freundlich isotherm model as heterogeneous process. The maximum adsorption capacity (qmax) is 5.298 mmol Cs+ g−1 adsorbent. Applicability of the synthesized composite material was also examined to remove 134Cs+ ions in different aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.