Abstract

The goal of this research is to separate and purify 152+154Eu generated from nuclear waste and/or research laboratories using synthesized composite material. Fourier infrared (FTIR), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements were used to characterize the composite material. On the 152+154Eu sorption process, the impacts of pH, contact time, and initial feed concentration were also examined. The best 152+154Eu removal efficiency was 86.4% achieved at pH 4.5 and 180 min. The sorption data of 152+154Eu ions were investigated using kinetic modeling and sorption isotherm models, and it was clear that the pseudo second-order kinetics and the Langmuir isotherm are the best matches for the sorption process. The produced adsorbent capacity was 11.48 mg g−1. Application study demonstrated that the removal efficiency (%) reached 92.4, 92.2 and 95.2% of 152+154Eu (carrier free) from river, tab and groundwater, respectively. According to the findings of this investigation, the proposed polymer composite is a strong candidate for recovering radioactive 152+154Eu ions from liquid waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call