Abstract

Synthetic dyes are considered toxic compounds and as such are not easily removed by conventional water treatment processes. This study demonstrated the synthesis of pure and manganese- (Mn), silver- (Ag), and iron- (Fe) doped zinc oxide (ZnO) nanoparticles via the wet chemical route. In particular, it investigated the batch adsorption studies and physiochemical properties of synthesized pure and doped ZnO materials for removing toxic congo red (CR) dye. X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) confirmed the synthesis of the pure and doped ZnO materials. The batch adsorption investigation revealed adsorption efficiencies of 99.4% for CR dye at an optimal dose of 0.03 g/30 ml for Mn-doped ZnO at a solution pH of 2. The adsorption capacity of each of the synthesized materials was found to be in order Mn-doped ZnO (232.5 mg/g) > Ag-doped ZnO (222.2 mg/g) > pure ZnO (212.7 mg/g) > Fe-doped ZnO (208.3 mg/g). Both pseudo-second-order kinetics model and the Langmuir isotherm model accurately explained the adsorption behaviors of CR dye. As such, Van der Waal interactions, H-bonding, and electrostatic interaction were found to be the adsorption mechanisms responsible for dye removal. In addition, the desorption–regeneration investigation indicated the successful reuse of the exhausted Mn-doped ZnO material for five cycles of CR dye adsorption with an efficiency of 83.1%. Overall, this study has demonstrated that Mn-doped ZnO could be considered a viable adsorbent for the cleanup of dye-contaminated water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call