Abstract
Novel polyvinyl pyrrolidone capped pure, Ag (1-3%) and Cu doped (1-3%) zinc oxide (ZnO) nanoparticles (NPs) were successfully synthesized via the co-precipitation method. The synthesized NPs were characterized by UV-visible spectrophotometry, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FE-SEM). Compared to pure ZnO, the absorption bands of Ag and Cu doped ZnO NPs were shifted and, further, the band gap energy was also decreased which confirms the incorporation of Ag and Cu into the ZnO lattice. The XRD diffraction peak confirms that all the synthesized compounds are found to be of highly crystalline hexagonal wurtzite structure. In addition, the presence of Ag and Cu in the ZnO NPs was further evidenced from EDS analysis. FE-SEM images established the morphology of the doped ZnO NPs which was not affected by the addition of Ag and Cu. The photocatalytic activity of undoped, Ag doped (1-3%) and Cu doped (1-3%) ZnO NPs were tested with brilliant green dye under UV irradiation. Degradation study reveals that doping has a distinct effect on the photocatalytic behavior of ZnO NPs. In addition to that, kinetic, thermodynamic and reusability studies have been performed for the 2% Ag doped ZnO NPs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.