Abstract

Novel polyvinyl pyrrolidone capped pure, Ag (1-3%) and Cu doped (1-3%) zinc oxide (ZnO) nanoparticles (NPs) were successfully synthesized via the co-precipitation method. The synthesized NPs were characterized by UV-visible spectrophotometry, X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and field emission scanning electron microscopy (FE-SEM). Compared to pure ZnO, the absorption bands of Ag and Cu doped ZnO NPs were shifted and, further, the band gap energy was also decreased which confirms the incorporation of Ag and Cu into the ZnO lattice. The XRD diffraction peak confirms that all the synthesized compounds are found to be of highly crystalline hexagonal wurtzite structure. In addition, the presence of Ag and Cu in the ZnO NPs was further evidenced from EDS analysis. FE-SEM images established the morphology of the doped ZnO NPs which was not affected by the addition of Ag and Cu. The photocatalytic activity of undoped, Ag doped (1-3%) and Cu doped (1-3%) ZnO NPs were tested with brilliant green dye under UV irradiation. Degradation study reveals that doping has a distinct effect on the photocatalytic behavior of ZnO NPs. In addition to that, kinetic, thermodynamic and reusability studies have been performed for the 2% Ag doped ZnO NPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call