Abstract

As a potential bio-derived replacement for restricted petrochemicals, isosorbide has emerged as an attractive renewable feedstock for high-performance materials. However, previously reported isosorbide-based polymers rarely offer desired mechanical properties for engineering applications and high materials utilization rate in manufacturing process. Here, we synthesize isosorbide-based polyaryletherketone (PIEK) via nucleophilic substitution poly-condensation reaction and reproduce it at a kg-scale production. Also, isosorbide can be copolymerized with petroleum-based monomers to obtain copolymers (PIEKs) with adjustable properties. PIEKs are melt/solvent-processible for manufacturing and recycling, and we fabricate PIEKs samples via high-temperature printing and low-temperature printing respectively to maximize materials utilization. 3D printing is an inherently waste-free method for accessing products of varying complexity, which is in accord with the concept of environmental protection. 3D-printed PIEKs objects present superior mechanical properties and biocompatibility simultaneously, which are ideal candidates for applications in engineering and health fields such as bone tissue engineering. This work not only develops ideal high-performance bio-based polymers for environmental sustainability, but provides advanced manufacturing technologies to achieve 100% materials utilization rate, which opens up applications in both health and environmental fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call