Abstract

The syntheses, structures, and characterization of four new lead(II)-tellurium(IV)-oxide halides, Pb(3)Te(2)O(6)X(2) and Pb(3)TeO(4)X(2) (X = Cl or Br) are reported. The materials are synthesized by solid-state techniques, using Pb(3)O(2)Cl(2) or Pb(3)O(2)Br(2) and TeO(2) as reagents. The compounds have three-dimensional structural topologies consisting of lead-oxide halide polyhedra connected to tellurium oxide groups. In addition, the Pb(2+) and Te(4+) cations are in asymmetric coordination environments attributable to their stereoactive lone pair. We also demonstrate that Pb(3)Te(2)O(6)X(2) and Pb(2)TeO(4)X(2) can be interconverted reversibly through the loss or addition of TeO(2). X-ray data: Pb(3)Te(2)O(6)Cl(2), monoclinic, space group C2/m (No. 12), a = 16.4417(11) A, b = 5.6295(4) A, c = 10.8894(7) A, beta = 103.0130(10) degrees, Z = 4; Pb(3)Te(2)O(6)Br(2), monoclinic, space group C2/m (No. 12), a = 16.8911(8) A, b = 5.6804(2) A, c = 11.0418(5) A, beta = 104.253(2) degrees, Z = 4; Pb(3)TeO(4)Cl(2), orthorhombic, space group Bmmb (No. 63), a = 5.576(1) A, b = 5.559(1) A, c = 12.4929(6) A, Z = 4; Pb(3)TeO(4)Br(2), orthorhombic, space group Bmmb (No. 63), a = 5.6434(4) A, b = 5.6434(5) A, c = 12.9172(6) A, Z = 4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.