Abstract

Video captioning is a challenging task that aims to generate linguistic description based on video content. Most methods only incorporate visual features (2D/3D) as input for generating visual and non-visual words in the caption. However, generating non-visual words usually depends more on sentence-context than visual features. The wrong non-visual words can reduce the sentence fluency and even change the meaning of sentence. In this paper, we propose a syntax-guided hierarchical attention network (SHAN), which leverages semantic and syntax cues to integrate visual and sentence-context features for captioning. First, a globally-dependent context encoder is designed to extract the global sentence-context feature that facilitates generating non-visual words. Then, we introduce hierarchical content attention and syntax attention to adaptively integrate features in terms of temporality and feature characteristics respectively. Content attention helps focus on time intervals related to the semantic of current word, while cross-modal syntax attention uses syntax information to model importance of different features for target word’s generation. Moreover, such hierarchical attention can enhance the model interpretability for captioning. Experiments on MSVD and MSR-VTT datasets show the comparable performance of our method compared with current methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.