Abstract
To assist doctors to diagnose mild cognitive impairment (MCI) and Alzheimer's disease (AD) early and accurately, convolutional neural networks based on structural magnetic resonance imaging (sMRI) images have been developed and shown excellent performance. However, they are still limited in their capacity in extracting discriminative features because of large sMRI image volumes yet small lesion regions and the small number of sMRI images. We proposed a task-driven hierarchical attention network (THAN) taking advantage of the merits of patch-based and attention-based convolutional neural networks for MCI and AD diagnosis. THAN consists of an information sub-network and a hierarchical attention sub-network. In the information sub-network, an information map extractor, a patch-assistant module, and a mutual-boosting loss function are designed to generate a task-driven information map, which automatically highlights disease-related regions and their importance for final classification. In the hierarchical attention sub-network, a visual attention module and a semantic attention module are devised based on the information map to extract discriminative features for disease diagnosis. Extensive experiments were conducted for four classification tasks: MCI versus (vs.) normal controls (NC), AD vs. NC, AD vs. MCI, and AD vs. MCI vs. NC. Results demonstrated that THAN attained the accuracy of 81.6% for MCI vs. NC, 93.5% for AD vs. NC, 80.8% for AD vs. MCI, and 62.9% for AD vs. MCI vs. NC. It outperformed advanced attention-based and patch-based methods. Moreover, information maps generated by the information sub-network could highlight the potential biomarkers of MCI and AD, such as the hippocampus and ventricles. Furthermore, when the visual and semantic attention modules were combined, the performance of the four tasks was highly improved. The information sub-network can automatically highlight the disease-related regions. The hierarchical attention sub-network can extract discriminative visual and semantic features. Through the two sub-networks, THAN fully exploits the visual and semantic features of disease-related regions and meanwhile considers global features of sMRI images, which finally facilitate the diagnosis of MCI and AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.