Abstract

In vivo modifying effects of bone marrow mesenchymal stromal cells of humans and laboratory mice on ROS production by mouse blood mononuclears are studied by luminol-dependent zymosan-induced chemiluminescence after syngeneic and xenogeneic transplantation into systemic blood flow. The chemiluminescent activity of mouse blood mononuclears has increased early (1 day) after syngeneic (mouse mesenchymal stromal cells) and xenogeneic (human mesenchymal stromal cells) transplantation. Later, 7-21 days after syngeneic and xenogeneic transplantation, the chemiluminescent activity of mouse mononuclears is suppressed. The probable mechanisms of involvement of the transplanted mesenchymal stromal cells in reprogramming of the blood mononuclear phagocytes from proinflammatory (M1) to anti-inflammatory (M2) phenotype under conditions of their in vivo interactions are discussed; a frequent manifestation of this reprogramming is transition of the phase of activation into inhibition of ROS-producing activity of macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call