Abstract
The chemical looping gasification (CLG) of rice husk was conducted in a fixed bed reactor to analyze the effects of the ratio of oxygen carrier to rice husk (O/C), temperature, residence time and preparation methods of Fe-based oxygen carriers. The yield of gas, H2/CO, lower heating value of syngas (LHV), conversion efficiency and performance parameters were analyzed to obtain CLG reaction characterization and optimal reaction conditions. Results showed that when O/C increased from 0.5 to 3.0, the gas production, H2/CO, CO2 yield and carbon conversion efficiency gradually increased, while the yield of H2, CO and CH4 and LHV gradually decreased. At the same time, a highest gasification efficiency was obtained when O/C was 1.5. As increasing temperature, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, while the yield of H2, CH4 and CO2, H2/CO and LHV gradually decreased. Sintering and agglomeration was obvious when the temperature was higher than 850 °C. When the reaction time increased from 10 min to 60 min, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, but the yield of H2, H2/CO and LHV decreased, among which 30 min was the best reaction residence time. In addition, coprecipitation was the best preparation method among several preparation methods of oxygen carrier. Finally, O/C of 1.5, 800 °C, 30 min and coprecipitation preparation method of oxygen carrier were the optimal parameters to obtain a gasification efficiency of 26.88%, H2 content of 35.64%, syngas content of 56.40%, H2/CO ratio of 1.72 and LHV of 12.25 MJ/Nm3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have