Abstract
Promoting grain growth and optimizing microstructure are valid strategies for enhancing gyromagnetic and microwave dielectric properties of low-temperature sintered ferrite materials. Here, a modified low-temperature sintering technique was attempted for the synthesis of LiZnTi ferrites that have compact microstructure and improved performances. Trace amounts of CuO-Bi2O3 mixtures (0.50 wt%) were adopted as sintering additives to promote grain growth and to reduce the sintering temperature. Meanwhile, Li0.42Zn0.27Ti0.11Fe2.2O4 nanoparticles (∼21.9 nm) were synthesized using a sol-gel auto-combustion method and were used to optimize the microstructure and to restrain abnormal grain growth. XRD Rietveld refinement and SEM images revealed that uniform and dense LiZnTi ferrites with single-phase spinel structure were obtained. Results demonstrated that co-doping of Li0.42Zn0.27Ti0.11Fe2.2O4 nanoparticles and CuO-Bi2O3 mixtures allows low-temperature sintering (900 °C) to be achieved and also promotes grain growth and densification. In particular, LiZnTi ferrites that were modified with 5.00 wt% Li0.42Zn0.27Ti0.11Fe2.2O4 nanoparticles and 0.50 wt% CuO-Bi2O3 sintering additives exhibited narrow ferromagnetic resonance linewidth (ΔH, ∼145 Oe) and low dielectric loss tangent (tanδε, ∼2.45 × 10−4) at ∼9.50 GHz, high saturation flux density (Bs, ∼364 mT), and high squareness ratio (Br/Bs, ∼0.89). Such a modified sintering technique at a low sintering temperature, as reported in this work, provides a reference for other advanced ferrites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.