Abstract

LiZnTi ferrite ceramics with high saturation flux density (Bs), large remanence ratio (Br/Bs) and high saturation magnetization (4πMs) is a vital material for high frequency devices. In the present work, we prepared uniform and compact LiZnTiBi ferrite with large average grain size (>30μm) at 900°C. Firstly, the hybrid materials, including Li2CO3, ZnO, TiO2, Bi2O3 and Fe2O3, were pre-sintered at 850°C at O2 atmosphere. Next, composite additives composited of Li2CO3 and ZnO nanoparticles were added to control grain growth. The influences of the Li2CO3 and nano-ZnO (LZ) on the microstructure and magnetic properties of LiZnTiBi ferrite, especially for grain size, have been analyzed. SEM images demonstrated that moderate LZ additives (x=0.75 wt%) can prevent abnormal grains. Also, the ferrite samples possess compact microstructures. The phenomenon indicated that the LZ additive is a good sintering aid for low-temperature sintering LiZnTiBi ferrites. XRD patterns showed that all samples have a pure spinel phase. The magnetic properties, including Bs, Br/Bs and 4πMs, have weak change when LZ additives were added. However, due to smaller average grain size, the coercivity (Hc) gradually increased. Thus, a low-temperature sintering LiZnTiBi ferrite with high saturation flux density (Bs=311.10 mT), large remanence ratio (Br/Bs=0.86), low coercivity (Hc=244.6 A/m) and high saturation magnetization (Ms=75.40) was obtained when 1.00 wt% LZ additive was added. More important, the LiZnTiBi ferrite possessed uniform average grain. Such a sintering method (i.e., adding composite additive to control abnormal grain) should also promote synthesis of other advanced ceramics for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call