Abstract
The challenges for rechargeable lithium‐oxygen batteries of low practical capacity and poor round‐trip efficiency urgently demand effective cathode materials to overcome the limitations. However, the synergy between the multiple active materials is not well understood. Here, findings of the synergistic effect between electrospun zinc oxide (ZnO) nanofibers and graphene nanoribbons (GNRs) unzipped from carbon nanotubes (CNTs) as cathode materials in rechargeable lithium‐oxygen batteries are described. Furthermore, the overpotentials and discharge capacities are tuned by the surface defect states of ZnO nanofibers and Pt nanocrytals in GNRs. It is observed that the optimized zinc oxide nanofibers hybridized with GNRs achieved a high reversible capacity of 6300 mAh g‐1carbon and enhanced stable cyclability under specific 50% of full discharge capacities. This report demonstrates that the ZnO nanofibers with a high degree of defects and hydrophilicity of the surface may be a promising cathode component for rechargeable lithium‐oxygen batteries and the optimum synergy between ZnO nanofibers and GNRs can balance the discharge capacity and cycle life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.