Abstract

BackgroundNewcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses. Additionally, immune checkpoint blockade has widely been investigated for its anti-tumor effects against several types of cancers. Here, we investigated for the first time whether the incorporation of influenza hemagglutinin-2 (HA2) FMG could improve the oncolytic characteristics of NDV against cervical cancer. Next, we added anti-PD-1 mAb to our therapeutic recipe to assess the complementary role of immune checkpoint blockade in curbing tumor progression.MethodsFor this purpose, TC-1 tumor cells were injected into the mice models and treatment with NDV, iNDV, HA2, NDV-HA2, iNDV-HA2 began 10 days after tumor challenge and was repeated at day 17. In addition, PD-1 blockade was conducted by injection of anti-PD-1 mAb at days 9 and 16. Two weeks after the last treatment, sample mice were sacrificed and treatment efficacy was evaluated through immunological and immunohistochemical analysis. Moreover, tumors condition was monitored weekly for 6 weeks intervals and the tumor volume was measured and compared within different groups.ResultsThe results of co-treatment with NDV and HA2 gene revealed that these agents act synergistically to induce antitumor immune responses against HPV-associated carcinoma by enhancement of E7-specific lymphocyte proliferation, inducement of CD8+ T cell cytotoxicity responses, increase in splenic cytokines and granzyme B, decrease in immunosuppressive cytokines and E6 oncogene expression, and upregulation of apoptotic proteins expression, in comparison with control groups. Moreover, incorporation of PD-1 blockade as the third side of our suggested therapy led to noticeable regression in tumor size and augmentation of cytokine responses.ConclusionsThe invaluable results of synergy between NDV virotherapy and HA2 gene therapy suggest that tumor-selective cell killing by oncolytic NDV can be enhanced by combining with FMG gene therapy. Moreover, the adjunction of the PD-1 blockade proves that checkpoint blockade can be considered as an effective complementary therapy for the treatment of cervical cancer.

Highlights

  • Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer

  • The invaluable results of synergy between NDV virotherapy and HA2 gene therapy suggest that tumorselective cell killing by oncolytic NDV can be enhanced by combining with fusogenic membrane glycoproteins (FMGs) gene therapy

  • Lymphocyte proliferation To determine whether the E7-specific lymphoproliferative response mainly resulted from NDV-HA2 treatment, Lymphocyte proliferation assay was performed among experimental groups

Read more

Summary

Introduction

Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. Cervical cancer as the 4th prevalent gynecological cancer type and one of the main cancer-related reasons for mortality among women is in demand for worldwide attention of all experts from gynecologists to cancer therapy developers [1] Conventional therapeutic approaches such as surgery, chemotherapy, and radiotherapy have been widely used to overthrow this widespread malignancy. The effectiveness of monotherapy with immune checkpoint blockade in clinical trials is doubtful and in some cases, the results are not satisfactory enough [8]. Besides these dissatisfactory approaches, oncolytic virotherapy with distinctive characteristics has shown promising results against cervical cancer [3]. Direct oncolysis along with the provocation of host systemic innate and adoptive immune responses introduce oncolytic virotherapy as one of the treatment methods with the most optimistic results in the treatment of human cancers [9]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.