Abstract
Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH4+-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH4+-N removal rate of 193.2 mg L−1 d−1, which was 28.8 % higher than that of culture system without straw. The final NH4+-N concentration in the effluent met the discharge standard of 5 mg L−1. Furthermore, the total organic carbon (TOC) released from straw facilitated bacterial proliferation and the secretion of extracellular polymeric substances (EPS). The EPS and TOC increased the suspension viscosity and surface tension, thereby enhancing the residence time of CO2 in the liquid phase and promoting CO2 fixation. This study presented a novel method for the biological treatment of high-ammonia–nitrogen DPW.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have