Abstract
Multienzymatic cascade system (MCS) strategies have been a topic of growing interest in the electrochemical biosensor research field owing to their many advantages. By combining two or more enzymes in an appropriate manner, MCS approaches can extend the range of detection for particular analytes while improving the overall efficiency of biocatalytic cascade reactions. Compared with mono-enzyme biosensors, the integration of MCS and electrochemical biosensor platforms is inherently more challenging owing to the increased complexity of the resultant system. In recent years, substantial progress in the development of MCS-based electrochemical biosensors with enhanced analytical performance has been made. This review provides an overview of the types of MCS strategies and their biosensor applications, together with a summary of synergistic optimization approaches that can help improve key parameters including sensitivity, selectivity, and stability when designing MCS-based electrochemical biosensors. These discussions include examples of published biosensor platforms (2016-2024) while also surveying key advances in associated research areas including redox mediators/enzyme co-immobilization, enzyme engineering, multienzyme spatial regulation, enzyme-nanozyme integration and others. Lastly, a brief overview of current challenges and future perspectives pertaining to MCS-based electrochemical biosensor design is provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have