Abstract

The propensity of sodium anode to form uniform electrodeposit is bound up with the nature of electrode surface and regulation of Na‐ion flux, as well as distribution of electronic field, which is quite crucial for high‐areal‐capacity sodium metal batteries (SMBs). Herein, a novel metallic sodium/sodium–tin alloy foil anode (Na/NaSn) with 3D interpenetrated network and porous structure is prepared through facile alloy reaction. The strong sodiophilic properties of sodium–tin alloy can lower the nucleation energy, resulting in smaller depositing potential and strong adsorption of Na+, while synergistic effect of porous skeleton and additional potential difference (≈0.1 V) between Na and Na–Sn alloy (Na15Sn4) can alleviate volume expansion, redistribute the Na‐ion flux and regulate electronic field, which favors and improves homogeneous Na deposition. The as‐fabricated Na/NaSn electrode can endow excellent plating/stripping reversibility at high areal capacity (over 1600 h for 4 mAh cm−2 at 1 mA cm−2 and 2 mAh cm−2 at 2 mA cm−2), fast electrochemical kinetics (500 h under 4 mAh cm−2 at 4 mA cm−2) and superior rate performances. A novel strategy in the design of high‐performance Na anodes for large‐scale energy storage is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.