Abstract

We report the effect of the dipole-dipole interaction and shape anisotropy in suspensions of permanently magnetized anisotropic particles. We quantify the dipolar interaction energy using an ellipsoid-dipole model to describe particles with similar or dissimilar shapes. The expression captures the physics of the point-dipole interaction energy between uniformly magnetized spherical particles. Additionally, we report Monte Carlo simulations to describe the effect of dipolar interaction and shape anisotropy under different field strengths. Results show that the shape anisotropy and dipolar interactions modify the head-to-tail interaction with respect to spheres, promoting dendritic and barbed-wire structures in uniform ellipsoids and binary mixtures, respectively. Furthermore, competing entropic and energy interactions generate a synergistic effect reducing the magnetic response of binary suspensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.