Abstract

Self-organized long-range order structures, such as stripe domains and magnetic skyrmion lattices, are formed by the competition between ferromagnetic exchange interaction and Dzyaloshinskii–Moriya (DM) interaction. We investigated the properties of the magnetic structures generated by a DM interaction under the influence of anisotropy or magnetic dipole interaction, by performing Monte-Carlo simulated annealing. We constructed phase maps in external-field and anisotropy space to study the effect of anisotropy or dipole interaction on the phase boundaries between the magnetic structures. The simulation results show that the phase boundaries are sensitive to perpendicular anisotropy and that the skyrmion lattice region in phase space is extended under easy-plane anisotropy. The effect of the long-range dipole interaction was studied and was found to stabilize the skyrmion lattice phase and reduce the size of the magnetic structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call