Abstract
Ferromanganese oxide biochar composite (FMBC) is an efficient remediation material for cadmium -contaminated soils. However, the effect of FMBC under varied water managements on the remediation of Cd-polluted soil is unclear. In this study, we conducted both incubation and field experiments to investigate the combined effects of corn-stover-derived biochar modified with ferromanganese on the immobilization and uptake of Cd by rice under continuous aerobic (A), aerobic-flooded (AF), and flooded-aerobic (FA) water management regimes. The results showed that loading iron-manganese significantly increased the maximum sorption capacity (Qm) of Cd on FMBC (50.46 mg g−1) due to increased surface area, as compared to the pristine biochar (BC, 31.36 mg g−1). The results revealed that soil Eh and pH were significantly affected by FMBC and it’s synergistic application with different water regimes, thus causing significant differences in the concentrations of DTPA-extractable Cd under different treatments. The lowest DTPA-extractable Cd content (0.28–0.46 mg−1) was observed in the treatment with FMBC (2.5 %) combined FA water amendment, which reduced the content of available Cd in soil by 2.63–28.4 %. Moreover, the treatments with FMBC-FA resulted the proportion of residual Cd increased by 22.2 % compared to the control. Variations in the content and fraction of Cd had a significant influence on its accumulation in the rice grains. The FMBC-FA treatments reduced the Cd concentration in roots, shoots and grains by 37.97 %, 33.98 %, and 53.66 %, respectively, when compared with the control. Predominantly because of the reduction in Cd biological toxicity and the improved soil nutrient content, the combined application increased the biomass and yield of rice to some extent. Taken together, the combination of the Fe-Mn modified biochar and flooded-aerobic water management may potentially be applied in Cd-polluted soil to mitigate the impacts of Cd on rice production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.