Abstract
Rational design of corrosion-resistant electromagnetic wave (EMW) absorbing materials with wide bandwidth, strong absorption, and low filling ratio remains a significant challenge. In this work, the melamine resin-based magnetic core-shell microspheres (MF@Fe3O4@SiO2) were synthesized via dispersion polymerization and in-situ growth method. Experimental and simulation results indicated that the content and magnetism of the magnetic shell coordinated with the MF-core could be tactfully regulated with a small amount of incorporated Ni content. Moreover, the dispersion and corrosion resistance of MF@Fe3O4 core-shell microspheres were obviously enhanced by coating SiO2. It is worth noting that after the composite of MF@Fe3O4@SiO2 with MWCNTs-20, the presence of numerous heterogeneous interfaces, the tactfully improved conductive loss, and the optimized impedance matching synergistically result in superior EMW absorption properties. When the filling amount was 30 wt%, F9N1-S/MWCNTs-20 with a matching thickness of 1.76 mm, exhibited the maximum effective absorption bandwidth (EABmax) of 6.55 GHz, while maintaining a reflection loss (RL) of −62.94 dB at 1.53 mm. When the thickness of F9N1-S/MWCNTs-30 was increased to 3.24 mm, the RLmin at low frequencies was achieved at −67.14 dB. Besides, the simulation of radar cross section values ascertains the enormous potential of F9N1-S/MWCNTs to achieve stealth under radar detection. This study introduces a novel method for producing lightweight and efficient EMW absorbers with corrosion resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have