Abstract

This study investigates the advantages of combined microbial degradation of polycyclic aromatic hydrocarbons (PAHs) in reducing the inhibitory effects of high-concentration eluents commonly used in soil washing. A microbial synergistic strategy was proposed using Arthrobacter sp. SZ-3 and Pseudomonas putida B6-2 as the key bacteria in the presence of Tween 80. The results show that in systems with Tween 80, the SZ-3 strain exhibits a strong capacity to degrade three types of PAH compounds, while the B6-2 strain follows multiple degradation pathways. Mixed bacteria achieved degradation rates 60.70% higher than single bacteria at varying concentrations of Tween 80. Additionally, the average growth rates of mixed bacteria increased by 1.17-1.37 times, aligning with the changes in the functional group. Protein activity detection within each degradation system corresponded with growth quantity and the cyclic variation characteristics of ETS enzyme activity. Notably, the ETS activity of mixed bacteria was 150% higher than that of single bacteria. At a Tween 80 concentration of 500 mg/L, the degradation rates of PAHs (Phe, Flu, Pyr) by mixed bacteria were significantly higher than those by single bacteria. The catechol 1,2-dioxygenase activity of mixed bacteria was 2.30 times higher than that of single bacteria. While Tween 80 did not alter the PAH degradation pathways, it significantly influenced the accumulation amount and duration of the characteristic intermediate product. This provides a reference for the remediation of recalcitrant pollutants under conditions involving high-concentration surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.