Abstract
The effects of trace sulfadiazine (SDZ) and cast-iron corrosion scales on the disinfection by-product (DBP) formation in drinking water distribution systems (DWDSs) were investigated. The results show that under the synergistic effect of trace SDZ (10 μg/L) and magnetite (Fe3O4), higher DBP concentration occurred in the bulk water with the transmission and distribution of the drinking water. Microbial metabolism-related substances, one of the important DBP precursors, increased under the SDZ/Fe3O4 condition. It was found that Fe3O4 induced a faster microbial extracellular electron transport (EET) pathway, resulting in a higher microbial regrowth activity. On the other hand, the rate of chlorine consumption was quite high, and the enhanced microbial EET based on Fe3O4 eliminated the need for microorganisms to secrete excessive extracellular polymeric substances (EPS). More importantly, EPS could be continuously secreted due to the higher microbial activity. Finally, high reactivity between EPS and chlorine disinfectant resulted in the continuous formation of DBPs, higher chlorine consumption, and lower EPS content. Therefore, more attention should be paid to the trace antibiotics polluted water sources and cast-iron corrosion scale composition in the future. This study reveals the synergistic effects of trace antibiotics and corrosion scales on the DBP formation in DWDSs, which has important theoretical significance for the DBP control of tap water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have