Abstract
This paper presents a study of the effects of microscopic particles of talc on the crystallization kinetics of PLA. Our study covers the quiescent conditions and the case where a shear flow is applied “short term shearing”. The incorporation of talc increases the crystallization rate; it enhances the nucleation mechanism through additional heterogeneous nuclei. The microstructure is highly affected by the addition of talc due to the increase of the number of nuclei (i.e. reduced crystalline size). The application of a shear flow increases the ability of PLA to crystallize even in the presence of talc particles. The impact of shear rate becomes dramatically important just after a critical shear rate of 0.1 s−1. It turns out that the shear rate enhances more the crystallization of PLA with talc than the pure PLA under quiescent conditions. Consequently, a supplementary contribution “synergistic effects” is responsible of the relative enhancement of the crystallization of PLA in the presence of shear flow and talc. With combining different experimental analysis techniques and modeling of the crystallization kinetics, the synergistically effects were quantified in terms of the nucleation density induced by the mutual interaction between shear flow and particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.