Abstract

The flammability characterization and synergistic effects of red phosphorus masterbatch (RPM) with expandable graphite (EG) in flame-retardant polypropylene (PP)/thermoplastic polyurethane (TPU) composites are investigated by limiting oxygen index, UL-94 testing, cone calorimeter tests, thermal gravimetric analysis, Fourier transform infrared (FTIR), and scanning electron microscopy. The results show that the flame retardancy of PP/TPU/EG/RPM composites is greatly influenced by RPM. The synergistic effects between RPM and EG take place in the flame-retardant composites. The presence of RPM with EG decreases significantly the heat release rates and total heat release, and UL-94 V-0 rating is achieved when suitable amount of RPM substitutes for EG in the PP/TPU/EG/RPM composites. The T onset and T 10 wt% of the composites are improved because of the presence of RPM. The FTIR spectra show that the incorporation of RPM improves the thermo-oxidative stability of PP/TPU at higher temperatures. The morphological observations indicate the reinforcement of thermal stability, and flame-retardant performance is attributed to the compact and stable char layers promoted by RPM with EG acted as an effective heat barrier and thermal insulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call