Abstract
A liquid-phosphorus-containing polyester diol, PPE, was prepared via condensation polymerization using commercial reactive flame retardant 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10-phospha-phenanthrene-10-oxide, adipic acid, ethylene glycol, and 1,4-butanediol. PPE and/or expandable graphite (EG) were then incorporated into phosphorus-containing flame-retardant polyester-based flexible polyurethane foams (P-FPUFs). The structure and properties of the resultant P-FPUFs were characterized using scanning electron microscopy tensile measurements, limiting oxygen index (LOI), vertical burning tests, cone calorimeter tests, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Unlike the FPUF prepared using regular polyester polyol (R-FPUF), PPE increased the flexibility and elongation at break of the resultant forms. More importantly, the peak heat release rate (PHRR) and total heat release (THR) of P-FPUF were reduced by 18.6% and 16.3%, respectively, via gas-phase-dominated flame-retardant mechanisms, compared with those of R-FPUF. The addition of EG further reduced the peak smoke production release (PSR) and total smoke production (TSP) of the resultant FPUFs while increasing the LOI and char formation. Interestingly, it was observed that EG noticeably improved the residual quantity of phosphorus in the char residue. When the EG loading was 15 phr, the resulting FPUF (P-FPUF/15EG) attained a high LOI value (29.2%) and exhibited good anti-dripping performance. Meanwhile, the PHRR, THR, and TSP of P-FPUF/15EG were significantly decreased by 82.7%, 40.3%, and 83.4%, respectively, compared with those of P-FPUF. This superior flame-retardant performance can be attributed to the combination of the bi-phase flame-retardant behavior of PPE and condensed-phase flame-retardant characteristics of EG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.