Abstract

In this study, the effects of filler characteristics and composite preparation methods on the morphology, mechanical property, electrical conductivity, and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30, wt%)/hybrid conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as main filler and TiO2, multi-walled carbon nanotube, and graphite were used as second fillers in the composites. The pultruded NCCF/polypropylene composite was used in the preparation of the polypropylene/polycarbonate/NCCF/second filler composites. The electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate/NCCF/second filler composites were compared with the type of second filler. The superior value of electromagnetic interference shielding effectiveness was observed to be 51.6 dB (decibel) when the hybrid fillers such as NCCF (5.2 vol% or 20 wt%) and TiO2 (1.2 vol% or 5 wt%) were added in the polypropylene/polycarbonate (70/30) composite. The electrical properties of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites was compared with the composite preparation methods, which were injection molding and screw extrusion. The results suggested that fiber length of the NCCF affected significantly to the electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call