Abstract

The effects of hybrid conductive fillers on the electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of polyamide 6 (PA6)/conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as the main filler and multi-walled carbon nanotube (MWCNT), nickel-coated graphite, carbon black, and titanium dioxide (TiO2) were used as the second fillers in this study. From the results of morphological studies of the PA6/NCCF/second filler composites, NCCF easily formed an electrical pathway since it has a high aspect ratio and random orientation, and the second fillers seemed to disperse evenly in the PA6 matrix. The electrical conductivity and EMI SE of the PA6/NCCF composites were increased with the increase of NCCF content. Among the second fillers used in this study, TiO2 appeared to be the most effective second filler with regard to increasing the EMI SE and electrical conductivity of the PA6/NCCF composite. This was probably because TiO2 has a high dielectric constant with dominant dipolar polarization, consequently leading to greater shielding effectiveness due to the absorption of electromagnetic waves. From the above results of EMI SE and electrical conductivity, it was suggested that the TiO2 produced a synergistic effect when it was hybridized with the NCCF of the PA6/NCCF/TiO2 composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.