Abstract
This study evaluated the synergistic antifungal effects of vapor-phase natural agents against Aspergillus flavus with an aim to prevent fungal contamination in agricultural products. Screening different combinations of natural antifungal vapor agents using the checkerboard assay revealed that the cinnamaldehyde and nonanal (SCAN) blend could exert the strongest synergistic antifungal activities against A. flavus, with a minimum inhibitory concentration (MIC) of 0.03 μL/mL, which caused a 76 % decrease in fungal population compared to when each agent was used separately. Subsequent gas chromatography–mass spectrometry (GC/MS) analysis demonstrated that the cinnamaldehyde/nonanal combination was stable and no effects on their individual molecular structures. SCAN at 2 × MIC completely inhibited the fungal conidia production and mycelial growth. The calcofluor white (CFW) and dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining assays showed that SCAN treatment could accelerate the destruction of cell wall integrity and accumulation of reactive oxygen species (ROS) in A. flavus. Moreover, pathogenicity assay indicated that in contrast to separate treatment with cinnamaldehyde or nonanal, SCAN could cause a decrease in the production of A. flavus asexual spores and AFB1 on peanuts, which verified its potential synergistic activity against fungal propagation. In addition, SCAN effectively preserves the organoleptic and nutritional properties of stored peanuts. Overall, our findings strongly indicated that the cinnamaldehyde/nonanal combination is a potentially significant antifungal agent against A. flavus contamination during the postharvest storage of peanuts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have