Abstract

Alpine lakes on the Tibetan Plateau are highly sensitive to global change and have been recognized as the sentinel of climate warming. However, anthropogenic impacts in populated area are migrating to these remote areas via transporting particulate nutrients by atmospheric deposition. Whether warming and nutrient deposition would impose additive or synergistic effects on the lake ecosystem remains largely unknown. Here, we present multi-proxy (sediment pigment and geochemistry) records during the past two centuries at the Cuoqia Lake in the southeast Tibetan Plateau. We found that the lake exhibited rapid ecological changes since 1980 AD characterized by an increase in primary productivity due to algal proliferation, with more rapid growth of green algae and diatoms. These findings are in concert with many other lakes (e.g., Moon Lake and Shade Co) in the same area, suggesting a consistent pattern of ecosystem evolution at the region scale. Statistical analyses suggested that nutrient deposition and climate warming were strongly associated with the variations in primary productivity and algae composition, exerting both individual and interactive effects. In addition, scenario analyses with a well-established process-based ecosystem model further revealed that the two factors not only individually, but also synergistically promoted the algal proliferation and community succession. Such synergy is evident in that the effect of lake warming would be more pronounced under higher nutrient deposition scenario, which is potentially due to higher temperature-driven mineralization in warmer conditions, and higher efficiency of nutrient utilization under enhanced light availability attributing to declining ice thickness and duration in cold seasons. Overall, our study proposes the existence and quantifies the synergistic impacts of climate warming and anthropogenic activities in driving the ecological changes in remote alpine lakes on the Tibetan Plateau. The lake ecological consequences driven by individual factor would be worsen by such synergy, so that we cannot predict the lake ecosystem trajectory in the future based on each factor separately, and more efforts than previously expected would be needed for the lake restoration and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call