Abstract
A comparison of melamine salt of pentaerythritol phosphate (MPP), and a synergistic agents, iron–graphene (IG) was performed in thermoplastic polyurethane (TPU) by masterbatch-melt blending on thermal and flame retardant properties. The flame retardant properties of TPU composites were characterized by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT). The CCT results revealed that IG can significantly enhance flame retardant properties of MPP in TPU. The peak heat release rate of neat TPU and flame retardant TPU/MPP composites decreased from 2192.6 and 226.7 to 187.2 kW/m2 compared with that of TPU containing 0.25 wt% IG. The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis (TGA) and thermogravimetric/Fourier infrared spectrum analysis (TG-IR). The results indicated IG and MPP can improve the thermal stability of TPU. The formation of thermal conductive network by IG can promote the decomposition of MPP into nonflammable melt, which can play the role of heat barrier and restrict the diffusion of fuels into combustion zone and access of oxygen to the unburned fuels. Copyright © 2016 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have