Abstract

AbstractTo reduce the crystallization rate of polyoxymethylene (POM) to meet the requirement of thick‐walled and large‐sized articles production, and maintain high crystallinity as well as obtain refined crystalline grains to ensure the strength and stiffness simultaneously, thermoplastic phenolic resin (PF) and multiwalled carbon nanotubes (MWCNTs) were used as crystal growth inhibitor and nucleating agent, respectively, and their effects on the crystallization of POM were studied in details. The results showed that PF is an effective inhibitor and MWCNTs exhibits excellent nucleation effect on POM. Based on the obtained results, their synergistic influences on the crystallization process of POM were investigated. It is found that the objective of decreasing the crystallization rate while maintaining high crystallinity and forming fine crystalline grains can be realized. The 97/3/1 wt% POM/PF/MWCNTs, compared with those of neat POM, The T c shifts by 3.3°C to a lower temperature, the crystallization enthalpy increases by 16.1 J/g and the full width at half‐maximum widens by 48.5%. The modulation effect of PF and MWCNTs on the crystallization is closely related to the PF content and dispersion, the distribution and dispersion of MWCNTs in the PF and POM phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call