Abstract
Developing a stable and methanol-tolerant electrocatalyst for a sustained oxygen reduction reaction (ORR) is of great importance for advancing direct methanol fuel cell applications. The silver-based electrocatalysts are particularly interesting among the promising non-Pt-based electrocatalysts for ORR. Herein, we report a single-step synthesis of a composite of AgCl and SnO2 with oxygen vacancy (AgCl-SnO2(VO)), which exhibits sustained and selective catalytic activity for the ORR along with excellent durability. Hydrothermal synthesis generates oxygen vacancies within the material and facilitates a strong interaction between AgCl and SnO2(VO), which effectively augments the ORR activity and the long-term stability of the composite. The composite exhibits remarkable methanol tolerance, as evidenced by a meager shift of only 0.002 V in the half-wave potential. Furthermore, the composite demonstrates excellent durability, with no noticeable changes in onset and half-wave potential even after 2500 cycles. The cost-effectiveness, durability, and ORR selectivity of this composite hold great promise toward contributing to the advancement of clean energy technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.