Abstract

In the present study, the synergistic effect of hybrid boron nitride (BN) with graphene on the thermal conductivity of epoxy adhesives has been reported. Graphene was prepared by chemical reduction of graphite oxide (GO) in a mixture of concentrated H2SO4/H3PO4 acid. The particle size distribution of GO was found to be ~10 μm and a low contact angle of 54° with water indicated a hydrophilic surface. The structure of prepared graphene was characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), Raman spectroscopy and atomic force microscopy (AFM). The thermal conductivity of adhesives was measured using guarded hot plate technique. Test results indicated an improvement in the thermal conductivity up to 1.65 W/mK, which was about ninefold increase over pristine epoxy. Mechanical properties of different epoxy formulations were also measured employing lap shear test. The surface characterization of different epoxy adhesive systems was characterized through XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies. Fourier transform infrared also served to determine the nature of interactions between filler particles and epoxy resin. Non‐isothermal differential scanning calorimetric (DSC) technique was used to investigate the effects of graphene and BN particles on the cure kinetics and cross‐linking reaction of epoxy cured with amine curing agent. The Kissinger equation, the model‐free isoconversional Flynn–Wall–Ozawa method and the Ozawa model were used to analyze the kinetic parameter. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.