Abstract
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L−1 for uric acid and 10.0 to 400.0 µmol L−1 for dopamine in the presence of 500 µmol L−1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L−1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.